AIRFLOWS IN NARROW STREET CANYONS: SINGLE OR DOUBLE VORTEX?

Lup Wai Chew
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, USA
lupwai@mit.edu

Amir A. Aliabadi
Environmental Engineering Program
University of Guelph
Guelph, ON, Canada
aaliabd@uoguelph.ca

Leslie K. Norford
Department of Architecture
Massachusetts Institute of Technology
Cambridge, MA, USA
lnorford@mit.edu

Abstract—Airflows in narrow urban street canyons (canyons with height-to-width aspect ratio of 2.0 or higher) are generally understood to induce two counter-rotating vortices. We show that the double-vortex regime only exists at low Reynolds numbers, \(Re \sim 10^3 \). At high \(Re \sim 10^5 \) or higher, only one vortex is observed, consistent with full-scale field measurement at \(Re \sim 10^6 \). The change from double-vortex regime at relatively low \(Re \) to the single-vortex regime at high \(Re \) suggests that the widely adopted critical \(Re \) (where \(Re \geq 10,000 \) is sufficiently high to ensure \(Re\)-independent flow) is not applicable for narrow street canyons.

Keywords - CFD simulations; high aspect ratio canyon; Reynolds number independence; skimming flow

I. INTRODUCTION

Airflows across urban areas have been studied extensively, as they have direct impacts on many aspects of built environments. For example, architectural features such as roof shape and building porosity can channel more winds into urban areas to enhance pollutant dispersion and improve the air quality [1–4]. Britter and Hanna [5] categorized the study of urban airflows into four scales: regional (~100 km), city (~10 km), neighborhood (~1 km), and street (~0.1 km). This paper focuses on the street scale, where we can resolve the flow features in individual urban street canyons. Urban street canyons (“canyons” hereafter) are outdoor spaces between buildings. When the street length is much larger than the building height, a two-dimensional (2D) canyon is formed. Under perpendicular winds, 2D canyons with a height-to-width aspect ratio \((H/W)\) larger than 0.7 exhibit the skimming flow pattern [6], which is the most severe in terms of pollutant or heat trapping inside canyons [5,7]. Therefore, many studies have investigated the skimming flow regime in 2D canyons.

Table I lists selected experiments and field studies with \(H/W \) between 1.0 and 2.4. Note that the height of canyons could be as small as 0.03 m (in reduced-scale experiments) and as large as 37 m (in full-scale field measurements). The Reynolds number, \(Re = \frac{HU}{\nu} \), is a dimensionless parameter to compare the scale, where \(U_{ref} \) is a reference wind speed (often taken to be the freestream wind speed), \(H \) is building height, and \(\nu \) is the kinematic viscosity. Reduced-scale
experiments have Re on the order of 10^3 to 10^5, while full-scale field measurements have Re two orders of magnitude higher at 10^6. At $Re \sim 10^5$, a single quasi-steady vortex is induced in a canyon with $H/W = 1.0$. In a narrow canyon, where $H/W = 2.0$, two vortices could be induced, as shown in Fig. 1 [18].

The Re required for Re-independent flows is often taken to be $10,000$ [10,11,13,19]. This means that the flow pattern does not change with increasing Re when Re exceeds 10,000. Studies 1-8 in Table I show that increasing the Re from 3,000 to 30,000, and further to 10^6, does not change the number of vortices in canyons with $H/W = 1.0$ (all studies reported one vortex). This means that the effect of Re is negligible, or the flows are Re-independent. However, this is not true for canyons with $H/W = 2.0$. Studies 9 and 10 in Table I reported two vortices at $Re \sim 10,000$, but studies 11 and 12 reported only one vortex at $Re \sim 10^6$. Clearly, the flows are not Re-independent in this range of Re, since the flow pattern changes when the Re is increased above 10,000. Our previous experimental work has shown evidence that Re-independence is achieved at $Re \sim 70,000$ for canyons with $H/W = 2.0$ [20]. However, only the velocity profiles were measured and no flow visualization is performed. This paper extends the study numerically by conducting computational fluid dynamics (CFD) simulations to visualize the overall flow fields in the canyons at different Re.

II. NUMERICAL MODEL

A. Description of Simulation Setup

Fig. 2 shows the 2D CFD domain. The dimension of the buildings and canyon follow those in our water channel experiments [20], which are used for model validation. The canyon height is $H = 0.2$ m while the canyon width is $0.5H$. Both the upstream and downstream buildings have a width of $0.6H$. Since a periodic boundary is employed on the left and right boundaries, the building width is halved to $0.3H$ in the CFD model. The top of the surface is $2.75H$ from the ground to match the water depth in the experiments. The top surface is a free-slip wall. The roof, walls, and ground have a no-slip boundary condition. The left and right boundaries have a periodic boundary condition, meaning that the domain repeats itself in the streamwise direction, forming an array with an infinite number of canyons. The initial conditions are zero for all parameters, except for the streamwise velocity, where a freestream velocity is prescribed based on the Re in each simulation.

The model is built and meshed in the ANSYS workbench package version R17.2. All grids are perfectly orthogonal (hexahedral). The grids near the walls are refined. The maximum grid expansion ratio is 1.2. The simulations are run with ANSYS FLUENT. A steady Reynolds-Averaged Navier-Stokes (RANS) solver with the standard k-epsilon turbulence closure scheme is used. We repeat the simulations with realizable and RNG k-epsilon schemes and obtain identical results. The enhanced wall treatment is selected based on the recommendation for wall-resolving flows [21]. The SIMPLEC (Sem-Implicit Method for Pressure-Linked Equations-Consistent) algorithm is used for pressure-velocity coupling. For discretization, the Least Squares Cell Based method is used for gradients and the second order scheme is used for all other parameters. The convergence criterion is set at 10^{-5} for all variables, which is achieved after 10,000 iterations. To test for convergence, the simulation is continued for another 10,000 iterations. The results do not change, confirming that a converged solution has been obtained.

B. Mesh Independence Study

Three models with coarse, normal, and fine mesh resolutions are built for mesh sensitivity study. The numbers of grids are 4,358, 17,572, and 39,432, respectively. For brevity, only the coarse mesh model is shown in Fig. 2. Fig. 3 compares the normalized streamwise velocity profiles at the middle of the canyon. The vertical distance from the ground, z, is normalized by the canyon height, H, while the streamwise velocity, u, is normalized by the freestream velocity, U_{ref}. The Re is 105,000, and the initial and boundary conditions are identical for all three models. The profiles from all three models have negligible difference above $z/H = 0.2$. Near the ground level (z/H between 0 and 0.2), the coarse mesh model underpredicts the u/U_{ref} magnitude. The normal mesh model produces a profile identical to that of the fine mesh model, confirming that the normal mesh resolution is sufficiently fine. However, to
achieve a dimensionless wall distance (y^+) on the order of 1, the fine mesh model is used for all subsequent simulations.

C. Model Validation

The water channel experiments in [20] are used for CFD model validation. The detailed experimental setup and methodology is available in [22]. The Re range is between 12,000 to 105,000 in the experiments. We conduct CFD simulations for each Re and compare the simulation results to the experiments. Fig. 4 shows that the simulated u/U_{ref} profiles agree well with the experiments. At the lowest Re (12,000), the CFD model correctly predicts the low velocity region at the bottom half of the canyon ($z/H < 0.5$). At the highest Re (105,000), the CFD model also correctly predicts the negative velocity near the ground level. The fractional bias, $FB = 2 \left(u_s - u_e \right) / \left(u_s + u_e \right)$, and the normalized mean-square error, $NMSE = \frac{(u_s - u_e)^2}{u_s \times u_e}$ are used to quantify the errors [23]. The over-bar represents average (the spatial average of the line profile in this study), u is the velocity, subscript s represents simulation, and subscript e represents experiment. The FB for each case (Re of 12,000, 28,000, 57,000, 87,000, and 105,000) is -0.033, 0.017, 0.058, 0.050, and 0.055, respectively. The NMSE is 0.016, 0.019, 0.025, 0.025, and 0.031, respectively. Since the FB and NMSE for all cases are small, the CFD models are considered validated.

![Fig. 3. Comparison of the normalized streamwise velocity profiles from the three models with different mesh resolutions.](image)

![Fig. 4. Comparison of simulated streamwise velocity profiles to experiments at different Reynolds number. All profiles taken at the middle of the canyon.](image)

![Fig. 5. Streamlines at different Reynolds number. When the Reynolds number is increased, the top vortex grows and the bottom vortex shrinks.](image)
To summarize, Fig. 5 shows that the commonly adopted critical $Re = 10,000$ for Re-independent flows does not hold in canyons with aspect ratio 2.0. Many reduced-scale studies have reported the double-vortex flow pattern in narrow street canyons and generalized the results to full-scale canyons. Consequently, applications derived based on the double-vortex flow regime (e.g., pollutant dispersion in narrow canyons [25,26]) may not be applicable at full-scale canyons. Therefore, we should revisit the applicability of previous studies on narrow canyons and be cautious when generalizing the results from reduced-scale experiments to full-scale built environments.

IV. CONCLUSIONS

The critical Reynolds number (Re) for Re-independent flows in urban street canyon is often taken to be 10,000. Using validated CFD models, we show that this critical Re is not applicable for narrow canyons with height-to-width aspect ratio of 2.0. In addition, narrow canyons are often understood to exhibit the double-vortex flow regime. We show that this regime only exists at relatively low Re ($< 28,000$). At sufficiently high Re ($> 57,000$), only one major vortex is observed, consistent with full-scale field measurement [19]. This finding changes the common understanding of flows in narrow canyons, where multiple vortices are expected.

REFERENCES

